Sciact
  • EN
  • RU

Searching for beyond the Standard Model physics using the improved description of 100Mo $$2\nu \beta \beta $$ decay spectral shape with CUPID-Mo Full article

Journal European Physical Journal C
ISSN: 1434-6044 , E-ISSN: 1434-6052
Output data Year: 2024, Volume: 84, Number: 9, Article number : 925, Pages count : 12 DOI: 10.1140/epjc/s10052-024-13286-4
Authors Augier C. 1 , Barabash A.S. 2 , Bellini F. 3,4 , Benato G. 5,6 , Beretta M. 7 , Bergé L. 8 , Billard J. 1 , Borovlev Yu.A. 9 , Cardani L. 4 , Casali N. 4 , Cazes A. 1 , Celi E. 5,6 , Chapellier M. 8 , Chiesa D. 10,11 , Dafinei I. 4 , Danevich F.A. 12,13 , De Jesus M. 1 , Dixon T. 8,13 , Dumoulin L. 8 , Eitel K. 14 , Ferri F. 15 , Fujikawa B.K. 16 , Gascon J. 1 , Gironi L. 10,11 , Giuliani A. 8 , Grigorieva V.D. 9 , Gros M. 15 , Helis D.L. 6 , Huang H.Z. 17 , Huang R. 7 , Imbert L. 8 , Juillard A. 1 , Khalife H. 15 , Kleifges M. 18 , Kobychev V.V. 12 , Kolomensky Yu.G. 7,16 , Konovalov S.I. 2 , Kotila J. 19,20,21 , Loaiza P. 8 , Ma L. 17 , Makarov E.P. 9 , de Marcillac P. 8 , Mariam R. 8 , Marini L. 6 , Marnieros S. 8 , Navick X.F. 15 , Nones C. 15 , Norman E.B. 7 , Olivieri E. 8 , Ouellet J.L. 22 , Pagnanini L. 4,6 , Pattavina L. 6,23 , Paul B. 15 , Pavan M. 10,11 , Peng H. 24 , Pessina G. 11 , Pirro S. 6 , Poda D.V. 8 , Polischuk O.G. 4,12 , Pozzi S. 11 , Previtali E. 10,11 , Redon Th. 8 , Rojas A. 25 , Rozov S. 26 , Sanglard V. 1 , Scarpaci J.A. 8 , Schmidt B. 15 , Shen Y. 17 , Shlegel V.N. 9 , Šimkovic F. 27,28 , Singh V. 7 , Tomei C. 4 , Tretyak V.I. 6,12 , Umatov V.I. 2 , Vagneron L. 1 , Velázquez M. 29 , Ware B. 30 , Welliver B. 7 , Winslow L. 22 , Xue M. 24 , Yakushev E. 26 , Zarytskyy M. 12 , Zolotarova A.S. 15
Affiliations
1 Univ Lyon, Université Lyon 1, CNRS/IN2P3, IP2I-Lyon, 69622 Villeurbanne, France
2 National Research Centre “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics, 117218 Moscow, Russia
3 Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy
4 INFN, Sezione di Roma, P.le Aldo Moro 2, 00185 Rome, Italy
5 Gran Sasso Science Institute, 67100 L’Aquila, Italy
6 INFN, Laboratori Nazionali del Gran Sasso, 67100 Assergi, AQ, Italy
7 Department of Physics, University of California, Berkeley, CA 94720, USA
8 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
9 Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia
10 Dipartimento di Fisica, Università di Milano-Bicocca, 20126 Milan, Italy
11 INFN, Sezione di Milano-Bicocca, 20126 Milan, Italy
12 Institute for Nuclear Research National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
13 INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
14 Institute for Astroparticle Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
15 IRFU,CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
16 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
17 Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, People’s Republic of China
18 Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
19 International Center for Advanced Training and Research in Physics (CIFRA), 409, Atomistilor Street, 077125 Bucharest-Magurele, Romania
20 Finnish Institute for Educational Research, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
21 1 Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120, USA
22 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
23 Physik Department, Technische Universität München, 85748 Garching, Germany
24 Department of Modern Physics, University of Science and Technology of China, Hefei 230027, People’s Republic of China
25 Université Grenoble Alpes, CNRS, Grenoble INP, LPSC/LSM-IN2P3, 73500 Modane, France
26 Laboratory of Nuclear Problems, JINR, 141980 Dubna, Moscow Region, Russia
27 Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia
28 Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague, Czech Republic
29 Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 38402 Saint Martin d’Héres, France
30 John de Laeter Centre for Isotope Research, GPO Box U 1987, Curtin University, Bentley, WA, Australia

Abstract: The current experiments searching for neutrinoless double-β (0νββ) decay also collect large statistics of Standard Model allowed two-neutrino double-β (2νββ) decay events. These can be used to search for Beyond Standard Model (BSM) physics via 2νββ decay spectral distortions. 100Mo has a natural advantage due to its relatively short half-life, allowing higher 2νββ decay statistics at equal exposures compared to the other isotopes. We demonstrate the potential of the dual read-out bolometric technique exploiting a 100Mo exposure of 1.47 kg × years, acquired in the CUPID-Mo experiment at the Modane underground laboratory (France). We set limits on 0νββ decays with the emission of one or more Majorons, on 2νββ decay with Lorentz violation, and 2νββ decay with a sterile neutrino emission. In this analysis, we investigate the systematic uncertainty induced by modeling the 2νββ decay spectral shape parameterized through an improved model, an effect never considered before. This work motivates searches for BSM processes in the upcoming CUPID experiment, which will collect the largest amount of 2νββ decay events among the nextgeneration experiments.
Cite: Augier C. , Barabash A.S. , Bellini F. , Benato G. , Beretta M. , Bergé L. , Billard J. , Borovlev Y.A. , Cardani L. , Casali N. , Cazes A. , Celi E. , Chapellier M. , Chiesa D. , Dafinei I. , Danevich F.A. , De Jesus M. , Dixon T. , Dumoulin L. , Eitel K. , Ferri F. , Fujikawa B.K. , Gascon J. , Gironi L. , Giuliani A. , Grigorieva V.D. , Gros M. , Helis D.L. , Huang H.Z. , Huang R. , Imbert L. , Juillard A. , Khalife H. , Kleifges M. , Kobychev V.V. , Kolomensky Y.G. , Konovalov S.I. , Kotila J. , Loaiza P. , Ma L. , Makarov E.P. , de Marcillac P. , Mariam R. , Marini L. , Marnieros S. , Navick X.F. , Nones C. , Norman E.B. , Olivieri E. , Ouellet J.L. , Pagnanini L. , Pattavina L. , Paul B. , Pavan M. , Peng H. , Pessina G. , Pirro S. , Poda D.V. , Polischuk O.G. , Pozzi S. , Previtali E. , Redon T. , Rojas A. , Rozov S. , Sanglard V. , Scarpaci J.A. , Schmidt B. , Shen Y. , Shlegel V.N. , Šimkovic F. , Singh V. , Tomei C. , Tretyak V.I. , Umatov V.I. , Vagneron L. , Velázquez M. , Ware B. , Welliver B. , Winslow L. , Xue M. , Yakushev E. , Zarytskyy M. , Zolotarova A.S.
Searching for beyond the Standard Model physics using the improved description of 100Mo $$2\nu \beta \beta $$ decay spectral shape with CUPID-Mo
European Physical Journal C. 2024. V.84. N9. 925 :1-12. DOI: 10.1140/epjc/s10052-024-13286-4 WOS Scopus РИНЦ OpenAlex
Dates:
Published print: Sep 13, 2024
Published online: Sep 13, 2024
Identifiers:
Web of science: WOS:001313311300002
Scopus: 2-s2.0-85203872646
Elibrary: 73683907
OpenAlex: W4402529350
Citing: Пока нет цитирований
Altmetrics: