Sciact
  • EN
  • RU

Graph theory and algebraic topology in the study of phase diagrams of multi-component condensed systems Review

Journal Russian Chemical Bulletin
ISSN: 1573-9171 , E-ISSN: 1066-5285
Output data Year: 2024, Volume: 73, Number: 4, Pages: 751-760 Pages count : 10 DOI: 10.1007/s11172-024-4190-1
Tags topology of phase diagrams, phase diagrams, three-component systems, four-component systems, fi ve-component systems, condensed systems.
Authors Shestakov V.A. 1
Affiliations
1 Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Abstract: Based on a constructive generalization of the results of works on the topology of phase diagrams of multi-component condensed systems, the contribution of these studies to the general theory of phase diagrams is presented. General fundamental specifi c features characteristic of certain classes of diagrams were identifi ed as a result of the systematic study of this topology. The topology of subsolidus isobaric-isothermal phase diagrams, as well as melting diagrams, is considered. This review can be useful for the formulation and solution of new problems in the study of phase diagrams of multi-component systems.
Cite: Shestakov V.A.
Graph theory and algebraic topology in the study of phase diagrams of multi-component condensed systems
Russian Chemical Bulletin. 2024. V.73. N4. P.751-760. DOI: 10.1007/s11172-024-4190-1 WOS Scopus РИНЦ OpenAlex
Original: Шестаков В.А.
Теория графов и алгебраическая топология в исследовании фазовых диаграмм многокомпонентных конденсированных систем
Известия Академии наук. Серия химическая. 2024. Т.73. №4. С.751-760. РИНЦ
Dates:
Submitted: Sep 11, 2023
Published print: Dec 13, 2023
Identifiers:
Web of science: WOS:001235375600031
Scopus: 2-s2.0-85192187148
Elibrary: 67429282
OpenAlex: W4396699982
Citing: Пока нет цитирований
Altmetrics: